662/Phs. 22-23 / 62412

B.Sc. Semester-VI Examination, 2022-23 PHYSICS [Honours]

Course ID: 62412 Course Code: SH/PHS/602/C-14/T-14

Course Title: Statistical Mechanics

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

SECTION-I

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Which of the statistics (FD, BE, and MB) will you use for a system having oxygen molecules? Explain.
 - b) State the most significant difference between the assumptions of Einstein and Debye theories of specific heat of solid.
 - c) Define grand canonical ensemble.
 - d) Define the 'degeneracy parameter'.
 - e) If three identical particles are distributed over three single particle states, how many possibilities are allowed if the particles are electrons?

- f) What are the basic assumptions of Plank's theory of Black body radiation?
- g) State Rayleigh-Jean's law for black body radiation?
- h) What is ultraviolet catastrophe?

SECTION-II

2. Answer any **two** questions:

- $5 \times 2 = 10$
- Derive the Richardson-Dushman equation for current density of thermionic emission from metal.
- b) State how the enumeration of the number of microstates leads to Gibbs Paradox. How can it be resolved?
- c) Write down the postulates of the Fermi-Dirac statistics. Derive an expression for the probability distribution of particles governed by the Fermi-Dirac statistics. 1+4
- d) For a two dimensional free electron gas, show that the number density is given by

$$n = \frac{4\pi mkT}{h^2} ln \left(e^{\frac{E_F}{kT}} + 1 \right).$$
 5

SECTION-III

- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) Define phase space and phase trajectory. Consider a system of N weakly coupled particles obeying Maxwell- Boltzmann statistics, kept at a temperature T. Each particle may exist in one of the three non-degenerate levels of energy $-\varepsilon$, 0, $+\varepsilon$.
 - i) What is the entropy of the system at T = 0K?
 - ii) What is the maximum possible entropy of the system?
 - iii) What is the minimum possible energy of the system?
 - iv) What is the partition function of the system?
 - v) What is the most probable energy of the system?
 - vi) If C(T) be the heat capacity of the system, find the value of $\int_0^T \frac{C(T)}{T} dT$. (1+1)+(1+1+1+2+2)

b) State Kirchhoff's law of radiation. Using classical mechanics, deduce Rayleigh-Jeans law of radiation. Assuming Plank's law, derive Wien's displacement law. Two stars A and B radiate maximum energy at 360 nm and 480 nm, respectively. What is the ratio of their absolute temperatures?

1+5+2+2
